GENERALIZATIONS OF COMPLETELY CONVEX FUNCTIONS

By R. P. Boas, Jr., and G. Pólya

DEPARTMENTS OF MATHEMATICS, DUKE UNIVERSITY AND BROWN UNIVERSITY

Communicated May 12, 1941

A function f(x) is said to be completely convex in an interval if it is real-valued and has derivatives of all orders (is of class C^{∞}) and if $(-1)^n f^{(2n)}(x) \ge 0$ in that interval. D. V. Widder has shown that a completely convex function coincides in its interval of definition with an entire function of growth not exceeding order one and finite type. One of the present authors has given a new proof of this theorem; the other, a generalization. In this note we give a much wider generalization, which also contains some results of S. Bernstein. This generalization was started by an (unpublished) note of the first named author, where a part of Theorem 2 (stated below) was proved, namely that f(x) is entire and of finite order in case (I).

THEOREM 1. Let $\{n_k\}$ and $\{q_k\}$ be sequences of positive integers, $\{n_k\}$ strictly increasing. Let f(x) be real-valued and of class C^{∞} in $-1 \le x \le 1$. For $k = 1, 2, \ldots$, let $f^{(n_k)}(x)$ and $f^{(n_k + 2q_k)}(x)$ not change sign in (-1, 1), and let

$$f^{(n_k)}(x)f^{(n_k+2q_k)}(x) \le 0. \tag{1}$$

- (I) If $n_k n_{k-1} = O(1)$ and $q_k = O(1)$, then f(x) coincides in (-1, 1) with an entire function of growth not exceeding order one and finite type.
- (II) If $n_k n_{k-1} = O(n_k^{\delta})$, $q_k = O(n_k^{\delta})$, and $q_1 + q_2 + \ldots + q_k = O(n_k)$, where δ is fixed, $0 < \delta < 1$, then f(x) coincides in (-1, 1) with an entire function of finite order not exceeding $1/(1-\delta)$.
- (III) If $n_k n_{k-1} = o(n_k)$, $q_k = o(n_k)$, and $q_1 + q_2 + \ldots + q_k = O(n_k)$, then f(x) coincides in (-1, 1) with an entire function.

This theorem contains (for $q_k = 1$) certain results of S. Bernstein, who derived them on the more restrictive hypothesis that no derivative of f(x) changes sign in (-1, 1). An interesting special case (where $2q_k = n_{k+1} - n_k$) is the following, a direct generalization of Widder's result.

THEOREM 2. Let $\{n_k\}$ be a strictly increasing sequence of positive even integers. Let f(x) be real-valued and of class C^{∞} in (-1, 1), and let

$$(-1)^k f^{(n_k)}(x) \ge 0 \qquad (k = 1, 2, \ldots).$$
 (2)

- (I) If $n_k n_{k-1} = O(1)$, f(x) coincides in (-1, 1) with an entire function of growth not exceeding order one and finite type.
- (II) If $n_k n_{k-1} = O(n_k^{\delta})$, $0 < \delta < 1$, f(x) coincides in (-1, 1) with an entire function of finite order not exceeding $1/(1-\delta)$.

(III) If $n_k - n_{k-1} = o(n_k)$, f(x) coincides in (-1, 1) with an entire function.

THEOREM 3. The results stated in Theorems 1 and 2 are "best" results in the following sense:

- (I, II) Corresponding to a given δ , $0 < \delta < 1$, we can construct an increasing sequence $\{n_k\}$ of even integers and an entire function f(x) such that (2) is satisfied, $(n_k n_{k-1})n_k^{-\delta}$ tends to a positive limit, and f(x) is exactly of order $1/(1-\delta)$.
- (III) Corresponding to a given positive ϵ we can construct an increasing sequence $\{n_k\}$ of even integers and a function f(x), analytic in (-1, 1), such that (2) is satisfied, $(n_k n_{k-1})/n_k$ tends to ϵ , but f(x) is not entire.

Our proof of Theorem 1, which we give in outline, depends on the following lemma.

LEMMA. If, in $-1 \le x \le 1$, g(x) is real-valued, of class C^{p+2q} , and satisfies

$$|g(x)| \le M, \quad g^{(p+2q)}(x) \le 0,$$

then

$$g^{(p)}(x) \leq A^{p+2q} (p+2q)^p M$$

in (-1, 1), A being an absolute constant (independent of the positive integers p and q and of the function g(x)).

By Taylor's theorem with remainder,

$$g^{(p)}(x) = g^{(p)}(0) + \frac{xg^{(p+1)}(0)}{1!} + \ldots + \frac{x^{2q-1}g^{(p+2q-1)}(0)}{(2q-1)!} + \frac{x^{2q}g^{(p+2q)}(\xi)}{(2q)!},$$

where $-1 < \xi < 1$ since $-1 \le x \le 1$. By hypothesis, the remainder is not positive and $g^{(p+2q-1)}(x)$ is monotonic. Therefore, 5 in $-1+h \le x \le 1-h$, where 0 < h < 1,

$$\left|g^{(p+2q-1)}(x)\right| \leq (p+2q-1)! \frac{1}{2} \left(\frac{4}{h}\right)^{p+2q-1} M.$$

Hence we deduce, by a theorem of A. Gorny,⁶ inequalities for $|g^{(\nu)}(0)|$, $\nu = 1, 2, ..., p + 2q - 2$; from these, the lemma follows.

To prove Theorem 1, denote the maximum of $|f^{(n)}(x)|$ in (-1, 1) by M_n . We apply the lemma to $g(x) = \pm f^{n_{k-1}}(x)$, with $p = n_k - n_{k-1}$ and $q = q_k$. We obtain

$$M_{n_k} \le A^{n_k - n_{k-1} + 2q_k} (n_k - n_{k-1} + 2q_k)^{n_k - n_{k-1}} M_{n_{k-1}}$$

Discussion of this recursive inequality gives appropriate upper bounds for M_{n_1}, M_{n_2}, \ldots . From these we pass, by the same theorem of Gorny, to an

appropriate upper bound for $|f^{(n)}(x)|$ in $-1 + \epsilon \le x \le 1 - \epsilon$, $n = 0, 1, 2, \ldots$

- ¹ Widder, D. V., "Functions Whose Even Derivatives Have a Prescribed Sign," these Proceedings, **26**, 657–659 (1940).
- ² Boas, R. P., Jr., "A Note on Functions of Exponential Type," forthcoming in Bull. Am. Math. Soc.
- ³ Pólya, G., "On Functions Whose Derivatives Do Not Vanish in a Given Interval," these Proceedings, 27, 216-218 (1941).
- ⁴ Bernstein, S., "On Certain Properties of Regularly Monotonic Functions," [in Russian], Comm. Soc. Math. Kharkow, (4) 2, 1-11 (1928).
- ⁵ Landau, E., "Über einen Satz von Herrn Esclangon," Math. Annalen, 102, 177-188 (1929); S. Bernstein, Leçons sur les propriétés extrémales . . . , Paris, 1926, p. 10.
- ⁶ Gorny, A., "Contribution à l'Étude des Fonctions Dérivables d'Une Variable Réelle," *Acta Math.*, 71, 317–358 (1939).

NATURAL SYSTEMS: THE STRUCTURE OF ABSTRACT MONOTONE SEQUENCES*

By Alfred L. Foster

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA

Communicated May 12, 1941

- 1. In a previous communication the author introduced the problem: to characterize the possible regular orderings of a natural system. A complete characterization was there given for the simplest non-trivial case, the natural system N_2 (containing exactly 2 primes). In the present paper a statement of the solution of this problem for the general case N_k (k primes, $1 \leq k \leq N_0$) and also that of the principal lemma are given, without proofs.
- 2. A natural system (with unit)³ is an abstract system (N, \circ) with single composition \circ (called simply "product") satisfying $(1^{\circ})-(7^{\circ})$ (in which, as elsewhere, $\sigma \circ \tau$ is abbreviated by $\sigma \tau$). For all elements σ , τ , φ of the class N
 - (1°) $\sigma \tau$ is a unique element of N.
 - $(2^{\circ}) \ \sigma(\tau\varphi) = (\sigma\tau)\varphi.$
 - (3°) $\sigma \tau = \tau \sigma$.
 - (4°) N contains a unique unit element ϵ : ($\epsilon \sigma = \sigma \epsilon = \sigma$).
 - (5°) N contains at least one prime (= irreducible) element $\alpha \neq \epsilon$: ($\alpha = \varphi \psi$ implies $\varphi = \epsilon$ or $\psi = \epsilon$).
 - (6°) Each element $\neq \epsilon$ of N can be expressed as the product of (a finite number of) prime elements in exactly one way.
 - (7°) N is a denumerably infinite class.

The abstractly distinct natural systems may be listed as N_1, N_2, \ldots